
A Unified View of Optimizers from an

Approximated Curvature Perspective

Zangwei Zheng

November 3, 2023

This manuscript discusses optimizers on the discriminative neural network
f(θ) with cross-entropy loss L over estimated likelihood p(x|θ). For simplicity,
we do not consider some optimization techniques (weight decay, momentum,
etc.). Titles with a star(∗) mean there are no real-world corresponding optimiz-
ers.

The analysis of optimizers in deep learning has three forms: 1. One-step
analysis by a local expansion of f(θ) 2. Convergence rate by bounding |L(θ)−
L(θ∗)|. 3. Analyze SDE by dynamic systems. In this manuscript, we will
focus on the first forms. By analyzing the local behavior, we can have a better
knowledge of optimizers.

1 Optimization without Stochasticity

(General Update) Let g = ∇f(θ) = Ex∼D[gx], H = ∇2f(θ), we consider
expansion f(θ + d) ≈ f(θ) + gT d + 1

2d
THd. Define ∆d = f(θ) − f(θ + d) =

−(gT d+ 1
2d

THd).
Eigenvalue decomposition forH isH = Qdiag(λ1, · · · , λn)Q

T , Q = [e1, · · · , en].
By a change of basis, we have d̂ = QT d and d = Qd̂ =

∑n
i=1 d̂ie⃗i=̇

∑
i d⃗i. Then

∆d = −
∑

(ĝid̂i +
1
2 d̂

2
iλi)=̇ −

∑
∆i

d, where ĝi is the decomposition of gradient
g, ∆i

d describes the changes contributed on each eigenvector.
The norm defined by H is ||d||2H = dTHd, which is the norm in the space

of [λ1e1, · · · , λnen]. The Taylor expansion requires a limited norm of d. And

along each eigenvector, we have ||d⃗i||2H = λid̂
2
i .

Taken together, we will focus on the following values.

d ∆d = −(gT d+
1

2
dTHd) ||d||2H = dTHd

d̂i ∆i
d = ĝid̂i +

1

2
d̂2iλi ||d⃗i||2H = λid̂

2
i

Generally speaking, when designing optimizers, we have the following goals:

• Maximize ∆d.

1



Table 1: Optimizers comparison in view of approximated curvature information.

Optimizer
Length
Limitation

Calculating
Approximation

Structure
Approximation

Iterative
Approximation

Newton’s Method
Natural Gradient Descent F
Normalized NGD ||d||H = ϵ

GN-Normalized NGD ||d⃗i||H = ϵgi
Eigenbasis Normalized NGD ||d⃗i||H = ϵ

Gradient Descent LI
Normalized GD ||d||H′ = ϵ LI

Sign GD ||d⃗i||H′ = ϵ LI

L-BFGS rank-2 update
iterative (secant assumption)
compute on last k items

K-FAC F̃ block-diagonal aiaj ⊥ ∂L
gi

∂L
gj

, momentum

Shampoo ||d⃗i||H′ = ϵgi F̃ L−1/4gR−1/4 momentum

Adaptive (Adam, Adagrad) ||d⃗i||H′ = ϵgi F̃ diagonal momentum

AdaHessian ||d⃗i||H′ = ϵgi diagonal Monte Carlo, momentum
Sophia F diagonal momentum

• Limit ||d||2H to avoid diverging (too large update), inaccurate Taylor ap-
proximation, and large value of directional sharpness (the second term
1
2 ||d||

2
H in ∆d).

• ||d⃗i||2H have similar values for a high conditional number problem.

• ∆i
d have similar values for a high conditional number problem.

(Pure Newton’s Method) When f is convex and H ⪰ 0, maximizing ∆d

leads to

d = −g̃ = −H−1g ∆d =
1

2
||g̃||2H ||d||2H = gTH−1g

d̂i = − ĝi
λi

∆i
d =

ĝ2i
2λi

||d⃗i||2H =
ĝ2i
λi

During the training of neural networks, most of H’s eigenvalues are positive [9].
Thus, we still consider the positive semi-definite H case.

(Newton’s Method) In convex optimization, we know if ||g|| is too large,
the pure Newton’s method may not converge [1]. A learning rate α ∈ (0, 1] can
be introduced to dampen the update.

d = −αg̃ ∆d = α(1− α

2
)||g̃||2H ||d||2H = α2||g̃||2H

d̂i = −α
ĝi
λi

∆i
d = α(1− α

2
)
ĝ2i
λi

||d⃗i||2H = α2 ĝ
2
i

λi

(Natural Gradient Descent) In our setting, the Fisher Information Matrix
(FIM) F equals Newton-Gaussian Matrix G [7], and G approximates Hessian
H [10], namely H ≈ F = G ⪰ 0. Thus, Newton’s Method and the Natural
Gradient Descent (NGD) are almost identical here.

2



In addition, ||d||KL = KL[p(θ)||p(θ + d)] ≈ 1
2 ||d||H , which means Newton’s

method and Natural Gradient Descent have the same distance measure.
Calculating F = Ex∼p(x|θ)[gg

T ] requires sampling from p(x|θ) instead of the
data distribution D. For computational efficiency, many works use Empirical
Fisher in ML F̃ = Ex∼D[gg

T ]. However, F̃ is only a good approximation of F
when f is well-learned. From now on, we will use the terms ’Newton’s method’
and ’Natural Gradient Descent’ interchangeably.

(Normalized Natural Gradient Descent) If we want the learning rate to
control the update length in Newton’s method (or KL divergence changes in
NGD) by ||αH−1g||H = ϵ, we have α = ϵ

||g̃||H . Thus, we have

d = −ϵ
H−1g√
gTH−1g

∆d = ϵ||g̃||H − ϵ2

2
||d||2H = ϵ2

(Gradient-Norm Normalized NGD) In training neural networks, only a
few eigenvalues are large while most of them are near 0. Thus we have a high
conditional number. If we want the same update length in each eigenbasis
||d⃗i||H , by introducing learning rate si on each eigenbasis to make ||d⃗i||H =
||sig̃i|| = ϵĝi. This leads to si = ϵ

√
λi. To make λi →

√
λi, we can use

H−1 → H−1/2.

d = −ϵH−1/2g ∆d = ϵ(H−1/2 − ϵ

2
I)||g||2 ||d||2H = ϵ2||g||22

d̂i = −ϵ
ĝi√
λi

∆i
d = ϵ(

1√
λi

− ϵ

2
)ĝ2i ||d⃗i||2H = ϵ2ĝ2i

. As we can see, the introduced learning rate si makes ||d||2H controlled by the
gradient norm. Namely, this method takes advantage of gradient norm length.
This serves as an explanation for adaptive optimizers (e.g., Adam [5]). To make
∆i

d > 0, we have ϵ < 2√
maxi λi

. This conclusion is in accordance with the

preconditioned sharpness in the ”adaptive edge of stability” [2].

(Eigenbasis Normalized NGD)∗ Since ĝi =
gT e⃗i
λi

, e⃗i with higher λi tends
to have smaller ĝi and less sensitive to noise. However, we do not know how ĝi
is distributed. Thus, let’s further consider a case in which we want to control

||di||H = ϵ. Therefore, si = ϵ
√
λi

|gi| . Define sign(x) = x
|x| , One possible way to

achieve this update is

d = −ϵH−1/2Qsign(QT g)

d̂i = −ϵ · sign(ĝi) ∆i
d = −ϵ|ĝi|+

1

2
ϵ2λi ||d⃗i||2H = ϵ2

A potential benefit here is the directional sharpness along each eigenbasis is
decoupled from gi. We are not sure about the performance of this method.

3



(Quasi-Newton Method) There are three main challenges for Newton’s
method in training:

• H needs O(n2) storage.

• Calculating H needs Θ(kn2), where k is a large constant for calculating
one element of H.

• Calculating H−1 needs O(n3).

Thus, practically, we use an approximation for calculating the Hessian matrix,
which is called the Quasi-Newton method. We summarize approximations into
three categories:

• Calculating Approximation (CA): use G,F, F̃ to approximate H.

• Structure Approximation (SA): assume H to be diagonal, block-
diagonal, block-tridiagonal, etc.

• Iterative Approximation (IA): use an iterative method to update H,
or use momentum to keep track of H. Besides, in the neural network,
which contains many function compositions, assumptions can be made to
calculate H layer by layer efficiently.

Classic Quasi-Newton methods use the secant method (IA): H∆θ ≈ ∆∇θ.
Besides, the SR1 method assumes each iterative update for H is rank-one, and
the BFGS method uses a rank-two update. However, this still requires O(n2)
computation and storage. L-BFGS [6] uses nearly k ∆θ and ∆∇θ to efficiently
calculate H−1g on the fly. However, this requires O(kn) storage, which is still
large for neural networks.

(Gradient Descent) One way to obtain gradient descent is to consider the
expansion f(θ + d) ≈ f(θ) + gT d+ L

2 ||∆θ||22 for a L-smooth f . Since L bounds
the largest eigenvalue, λi < L, from another perspective, we can view GD as
NGD with a SA that H is a diagonal matrix with apriori max eigenvalues L,
namely H ≈ H ′ = LI. Therefore, ||d||2H′ = L||d||22 and g̃ = g

L .

d = −α

L
g ∆′

d =
α

L
(1− α

2
)||g||22 ||d||2H′ =

α2

L
||g||22

∆d =
α

L
||g||22 −

α2

L2
||g||2H ||d||2H =

α2

L2
gTHg

d̂i = −α

L
ĝi ∆i′

d =
α

L
(1− α

2
)ĝi ||d⃗i||2H =

α2

L2
λiĝ

2

With approximated Hessian H ′, the first line analyzes the ∆′
d and ||d||2H′ under

H ′, which can be directly obtained by using Newton’s method’s results. On the
other hand, the second line analyzes the real values.

To make ∆′
d > 0, we have α < 2. Define learning rate η = α

L we have η < 2
L .

In addition, the optimal learning rate is η = ||g||2
||g||2H

.

4



(Normalized Gradient Descent) With ||d||H′ = ϵ, we have α = ϵL1/2

||g||2 .

d = −ϵL−1/2 g

||g||2
∆′

d = ϵ
||g||22
L

− ϵ2

2
||d||2H′ = ϵ2

The new learning rate η′ = ϵL−1/2.

(Sign Gradient Descent) When approximating H as LI, the counterpart

for Gradient-Norm Normalized NGD is still Gradient Descent since ||d⃗i||2H = ϵĝi
leads to d̂i = −ϵ ĝi√

λi
. With λi = L, it is equivalent to use α = ϵ

√
L.

The counterpart for Eigenbasis Normalized NGD requires ||d⃗i||2H = ϵ, which
can be obtained by setting d = −ϵH−1/2Qsign(QT d). Since here Q = I, we
have d = −ϵL−1/2sign(g). Let η = ϵL−1/2, we have the sign gradient descent
d = −η · sign(g).

(Diagonal Natural Gradient Descent) We approximate H by a diagonal
matrix, namely H = diag(λ1, · · · , λn). This is better than the LI matrix,

and we still have a bunch of good properties: Q = I, ∥d∥2H = λ⃗T d2, where

λ⃗ = [λ1, · · · , λn]
T and (·)2 means element-wise square. g̃ = g/λ⃗, where ·/·

means elemental-wise division. Thus,

• Natural Gradient Descent: d = −αg/λ⃗, e.g. Sophia [7].

• Normalized NGD: d = − ϵ

λ⃗T d2
g/λ⃗.

• Gradient-Norm Normalized NGD: d = −ϵg/λ⃗1/2, e.g., Adagrad [8], Adam [5],
AdaHessian [13].

• Eigenbasis Normalized NGD: d = −ϵ · sign(g)/λ⃗1/2.

(Approximated Natural Gradient Descent) There are also works using
other approximations, such as K-FAC [3] and Shampoo [4]. We list optimizers
in Table 1 for comparison.

(Clipped Natural Gradient Descent) For different versions of Normal-
ized NGD, we can relax the normalization to clipping. Let C = ϵ

α be the
clipping threshold. When we need a learning rate α ≤ ϵt, we use learning rate
αmin(1, Ct). Thus:

• Clipped NGD: α ≤ ϵ
||g̃||2H

, d = −αmin(1, C
||g̃||2H

)g̃.

• Gradient-Norm Clipped NGD: d⃗i = −αmin(1, C
√
λi)

ĝi
λi
.

• Eigenbasis Clipped NGD: d⃗i = −αmin(1, C
√
λi

|ĝi| )
ĝi
λi
.

The first one is the gradient-norm clipping technique. The latter two can only
be efficiently calculated with a diagonal Hessian.

For diagonal NGD, Sophia uses an element-wise clipping d̂i = −αmin(1, λiϵ
|ĝi| )

ĝ
λi
,

which can be seen as an approximated Eigenbasis Clipped NGD.

5



2 Optimization with Stochasticity

(General Update) Define noise ξ = gx − g. Since g =
∑

x gx, we have
E[ξ] = 0. The covariance matrix Σξ = E[ξξT ]. For a batch b with batch size B,
the noise ξb =

1
B

∑
x∈b ξx. It is easy to see E[ξb] = 0,Σξb = 1

BΣξ. Similarly, for
batch gradient gb we have E[gb] = g,Σgb = 1

BΣξ.
Thanks to the Central Limit Theorem, with a large batch size, the ξ is sub-

ject to Gaussian Distribution [12]. Recent studies show the covariance matrix
can be approximated by Σξ ≈ kH [11], where H is the Hessian matrix, and

k ∼ L(θt). Thus, we assume that ξb ∼ N (⃗0, k
BH).

Generally, the update direction can be expressed as db = Agb = Ag+Aξb=̇d+
dξ. The component dξ has covariance matrix E[(Aξb)

T (Aξb)] = E[tr(ξTb ATAξb)] =
tr(ATAΣξb). In a stochastic setting, we care about the expected version E[f(θ+
db)] ≈ f(θ) + gT d + 1

2d
THd + 1

2E[ξ
THξ]. Compared with the case without

stochasticity, the noise introduces an additional term Nb = 1
2E[d

T
ξ Hdξ] =

1
2 tr(HATAΣξb). With approximation, we have Nb = 1

2
k
B tr(HATAH). Al-

though in one step, we want to reduce Nb, some papers point out that higher
Nb can better jump out local minima.

If we use Calculating Approximation (CA) like F̃ , our estimation of H is
inaccurate due to the noise in gradients. First, Fb = Ex∼p(x|θ)[gbg

T
b ] = F+ 1

BΣξ̂,
where Σξ̂ ̸= Σx because the sampling distribution is different. Meanwhile,

F̃b = Ex∼D[gbg
T
b ] = F̃ + 1

BΣx. So, we must consider the error introduced by
Noisy Approximation (NA).

We still want to know what happens on each eigenbasis. Similar to the
decomposition of d, we have d̂ξ = QT dξ, dξ = Qd̂ξ =

∑n
i=1 d̂ξ e⃗i=̇

∑
i d⃗ξi. Note

that ||d⃗ξi||22 = ||((Aξ)T e⃗i)e⃗i||22 = k
B tr(AHAT e⃗ie⃗

T
i ).

(Newton’s Method) With A = αH−1, we have Nb = 1
2

k
Bα and ||d⃗ξi||22 =

kα
Bλi

. While smaller components in the eigenbasis with large eigenvalues make
update stable, this on the other hand weakens the ability to jump out of sharp
minima.

(Normalized Natural Gradient Descent) With A = αH−1/2, we have

Nb = 1
2

k
Bαtr(H) and ||d⃗ξi||22 = kα

B . This makes noise length equal on every
eigenbasis.

(Gradient Descent) With A = αI, we have Nb = 1
2

k
B tr(HH), ||d⃗ξi||22 =

kλi

B α. Since tr(H) is usually smaller than 1, from Newton’s method to gradient
descent, we can see the noise term is decreasing (Nb) while the length on large
eigenvalues grows. This can also explain why SGD flavors flat minima.

6



References

[1] S. Boyd and L. Vandenberghe, “Convex optimization,” in 1st ed. New
York, NY, USA: Cambridge University Press, 2004, ch. 9-10.

[2] J. M. Cohen et al., “Adaptive gradient methods at the edge of stability,”
arXiv preprint arXiv:2207.14484, 2022.

[3] R. Grosse and J. Martens, “A kronecker-factored approximate fisher ma-
trix for convolution layers,” in International Conference on Machine Learn-
ing, PMLR, 2016, pp. 573–582.

[4] V. Gupta, T. Koren, and Y. Singer, “Shampoo: Preconditioned stochastic
tensor optimization,” in International Conference on Machine Learning,
PMLR, 2018, pp. 1842–1850.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[6] D. Liu and J. Nocedal, “On the limited memory method for large scale
optimization: Mathematical programming b,” 1989.

[7] H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma, “Sophia: A scalable stochastic
second-order optimizer for language model pre-training,” arXiv preprint
arXiv:2305.14342, 2023.

[8] Y. Liu, W. J. Su, and T. Li, “On quantum speedups for nonconvex opti-
mization via quantum tunneling walks,” Quantum, vol. 7, p. 1030, 2023.

[9] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empiri-
cal analysis of the hessian of over-parametrized neural networks,” arXiv
preprint arXiv:1706.04454, 2017.

[10] A. R. Sankar, Y. Khasbage, R. Vigneswaran, and V. N. Balasubramanian,
“A deeper look at the hessian eigenspectrum of deep neural networks and
its applications to regularization,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, 2021, pp. 9481–9488.

[11] M. Wang and L. Wu, “The noise geometry of stochastic gradient descent:
A quantitative and analytical characterization,” arXiv preprint arXiv:2310.00692,
2023.

[12] Y. Wu, R. Luo, C. Zhang, J. Wang, and Y. Yang, “Revisiting the char-
acteristics of stochastic gradient noise and dynamics,” arXiv preprint
arXiv:2109.09833, 2021.

[13] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
in proceedings of the AAAI conference on artificial intelligence, vol. 35,
2021, pp. 10 665–10 673.

7


