Math

  • Fourier Series: 任意周期为 $1$ 的函数可表示为 $\frac{a_0}{2}+\sum_{n=1}^N(a_n\cos(2\pi nt)+b_n\sin(2\pi nt))$
  • $f(x)=\sum_{n=-N}^Nc_ne^{2\pi int},c_n=\int_0^1e^{-2\pi int}f(t)dt$
  • $(f*g)(t)=\int_{-\infty}^{\infty} g(t-x)f(x)dx$
  • $\Pi(x)=[|x|\leq 1]$
  • $(\Pi*\Pi)(x)=\Lambda(x)$
  • Radical Inverse
    • $n=a_k\cdots a_2a_1$
    • $\Phi_b(n)=0.a_1a_2\cdots a_k$
  • Van der Corput Sequence: $x_i=\Phi_2(i)$
  • Halton Sequence: $x_i=(\Phi_2(i),\Phi_3(i),\Phi_5(i),\dots,\Phi_{p_d}(i))$
  • Hammersley Sequence: $x_i=(\frac{i-\frac{1}{2}}{N},\Phi_2(i),\Phi_3(i),\Phi_5(i),\dots,\Phi_{p_{d-1}}(i))$

Reconstruction

  • 时间域
    • 冲激串 $\delta_T$
    • 重建 $\widetilde f(x)=(\delta f)\otimes r$
    • 重构核 $r$
      • sinc
      • 高斯
      • 三角
  • 频率域
    • $\widetilde F=(F(\omega)\otimes \delta_{1/T})\Pi_T(\omega)$
  • reconstruction filter
    • ideal ones not exist
    • Box Filter
    • Triangle Filter
    • Gaussian Filter
    • Mitchell Filter
    • Windowed Sinc Filter
  • Denoising

Aliasing

  • Small triangles
  • Stairstepping(jaggies)
  • Moire Patterns
  • 车轮倒转

Source of High Frequencies

  • Geometry
    • Edges, Vertices, sharp boundaries
    • silhouettes
  • Texture
  • Illumination

Antialiasing Techiques

  • Nonuniform sampling: $\sum_{i=-\infty}^{\infty}\delta(x-(i+\frac{1}{2}-\xi)T)$
    • noise better than aliasing
  • Adaptive sampling: Taking more samples in high-frequency regions
  • Prefiltering: mipmap

Evaluating

  • Blue noise property
    • 白噪:完全随机采样,处处有能量
    • 蓝噪:低频无能量,低频完美重构,高频转化为噪声
  • gittered grid
  • Poisson Disk Sampling
    • Dart Throwing: keep throwing darts into a domain with minimum distance constrain
    • Lloyd’s Relaxation
      • construct voronoi
      • move to centroid
    • Tiled
  • Discrepany: how “uniform” the sampling pattern is
    • $D_N(B,P)=|\sum_{b\in B}\frac{#{x_i\in b}}{N}-\text{Vol}(b)|$

采样方法

  • Uniform Sampling
  • Random Sampling
  • Blue noise Sampling
  • Stratified Sampling
    • Uniform sample + random perturbation (jittering)
  • Low-Discrepancy Sampling(quasi-random sampling)
    • Sample with Van der Corput Sequence $D^*_N(P)=O(\frac{\log N}{N})$
    • Sample with Halton Sequence: $D^*_N(P)=O(\frac{(\log N)^d}{N})$