Concepts
Geometry Optics
光的直线传播定律
光的反射定律
法向量:$N$
入射光:$L$ (归一化)
反射光:$R=2(N\cdot L)N-L$
光的折射定律
Snell’s law: $\eta_L\sin\theta_L=\eta_T\sin\theta_T$
$T=-N\sqrt{1-\frac{\eta^2_L}{\eta^2_T\sin^2\theta_L}\sin^2\theta_L}-\frac{\eta_L}{\eta_T}[L-(N\cdot L)N]=(\frac{\eta_L}{\eta_T}N\cdot L-\sqrt{1-\frac{\eta_L^2}{\eta_T^2}[1-(N\cdot L)^2]})N-\frac{\eta_L}{\eta_T}L$
Total Internal Reflection
基本假设
Linearity
Energy conservation
Steady state
No polarization
No fluorescence or phosphorescence
Radiometry and Color
Radiometry: the science of measuring radiant energy transfer
Radiometric Quantities
Energy
Radiant power (total flux) $\Phi,P$ 功率 (J/s, W)
Irradiance (flux density) $E$: total radiant power per unit area incident onto a surface
Inverse square law: $E=\frac{\Phi}{4\pi r^2}$
Lambert’s law: $E=\frac{\Phi\cos\theta}{A}$
Radiosity (flux density) $B$: total radiant power per unit area leaving a surface
Intensity $I$: flux density per solid angle $I=\frac{d\Phi}{d\omega}$
isotropic point source: $\Phi=4\pi I$
Radiance $L$: total flux traveling at some point $x$ in a specified direction $\omega$, per unit area perpendicular to the direction of travel
$L(x,\omega)=\frac{d^2\Phi}{dA\cos\theta d\omega}$
沿光线传输方向,radiance 不变(真空),sensors response is proportional to radiance
Solid Angles $\omega$: the solid angle subtended by an object is the surface area of its projection on to the unit spher
$d\omega=\frac{dA\cos\theta}{r^2}$
球坐标系:$\sin\theta d\theta d\phi$
Spectrum: 370nm - 730nm
SPD: Spectral Power Distribution
photometry: 物理量转换为视觉感知量
BRDF and The Rendering Equation
Bidirectional Reflectance Distribution Function: $f_r(\omega_i\rightarrow\omega_r)\equiv\frac{L_r(\omega_r)}{L_i(\omega_i)\cos\theta_i d\omega_i}$ (辐射率 $L$ 和辐照度 $E$ 的比值,对入射光改变的能力,材质,六维函数)
The Reflection Equation(local direct illumination model): $L_r(\omega_r)=\int_{\Omega_i}f_r(\omega_i\rightarrow\omega_r)L_i(\omega_i)\cos\theta_id\omega_i$
The Rendering Equation: $L_o(x,\omega_o)=L_e(x,\omega_o)+\int_{\omega_i\in\Omega_+}f_r(\omega_i,x,\omega_o)L_i(x,\omega_i)\cos\theta_id\omega_i$
迭代计算:$L_o(x,\omega_o)=L_e(x,\omega_o)+\int_{y\in S}f_r(\omega_i,x,\omega_o)L_o(y(x,\omega_i),-\omega_i)V(x,y)G(x,y)dA_y$
Ligiting Simulation = Solving the Rendering Equation
Monte Carlo Methods (Ray tracing, path tracing…)
Finite element methods (Classic radiosity)