- Vernam cipher/ One-time pad: 绝对安全(信息论安全),Eve 做任何计算
- 加密前后概率分布需一样
- Theorem: the secret key has to be as long as the message
- 密码学安全:Eve 在多项式时间内无法得到任何有效信息
- DH Key Exchange: 离散对数问题,量子计算机下不安全
- Information reconciliation
- Condition: flipped bits $\leq\delta$ fraction of bits
- Goal: Alice and Bob
- Error encoding code
- BB84 QKD protocol
- $a,b\in_R{0,1}^{(4+\delta)n}$
- $|\psi\rangle=\otimes_{k=1}^{(4+\delta)n}|\psi_{a_k,b_k}\rangle$
- $|\psi_{0,0}\rangle=|0\rangle,|\psi_{1,0}\rangle=|1\rangle,|\psi_{0,1}\rangle=|+\rangle,|\psi_{1,1}\rangle=|-\rangle$
- Bob announce achievement
- Bob $b’\in_R{0,1}^{(4+\delta)n}$
- $b’_i=0$ measure $i$-th bit at ${|0\rangle,|1\rangle}$
- $b’_i=1$ measure $i$-th bit at ${|+\rangle,|-\rangle}$
- Alice announce $b$
- Discard the bits where $b$ and $b’$ differ
- Together select a subset of $n$ bits
- Announce these $n$ bits and compare
- Information reconciliation
- privacy amplification
- Collision entrop: $H_c(X)=-\log(\sum_xp(x)^2)$
- QKD 应用
- 京沪干线
- 墨子号卫星
- Q Monkey
- 基于长时间保存量子态
- Post-Quantum Cryptography
- 经典密码学
- 单向函数设计时对付量子计算机
- 替换大数分解
- Lattice-based: 理论完善(量子计算难)
- Multivariate
- Hash-based
- Code-based
- Supersingular elliptic curve isogeney
- NIST: Post-Quantum Cryptography Standardization
- Delegated Q. Computation
- 验证对方是量子计算机
- Factor $\in$ BQP$\backslash$P
- only 1000 quib
- Factor 上万比特
- 协议要求
- honest: complete
- dishonest: user is able to detect
- (Bonus) does not learn anything
- 08: 2台
- 18: 1台
- 验证对方是量子计算机
Quantum Simulation
近 5-10 年可用,解薛定谔方程
需要懂物理,理解 $H$
Quantum Distribution Computation
量子分布计算,混合计算