matrix = operator = gate
Single qubit operator
- Pauli operators
- $I=(1,0;0,1)$
- $X=(0,1;1,0)$ (非门)
- $X|0\rangle=|1\rangle,X|1\rangle=|0\rangle$
- $Y=(0,-i;i,0)$
- $Y=iXZ,XY=-YX,XZ=-ZX,YZ=-ZY$
- $Z=(1,0;0,-1)$
- $Z|0\rangle=|0\rangle,X|1\rangle=-|1\rangle$
- Hadamard gate: $H=\frac{1}{\sqrt{2}}(1,1;1,-1)$
- $H|0\rangle=|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}},H|+\rangle=|0\rangle$
- $H|1\rangle=|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}},H|-\rangle=|0\rangle$
- $H^{\otimes n}|0^n\rangle=\frac{1}{\sqrt{2^n}}\sum_{x\in{0,1}^n}|x\rangle$
- $H|x\rangle=\sum_z\frac{(-1)^{xz}}{\sqrt{2}}|z\rangle$
- $H^{\oplus n}|x\rangle=\frac{\sum_z(-1)^{x\cdot z}|z\rangle}{\sqrt{2^n}}$
- $x\cdot z$: binary product mod 2
- $HXH=Z,HZH=X,HYH=-Y$
- Phase Gate: $S=(1,0;0,i)$
- T gate($\frac{\pi}{8}$ gate): $T=(1,0;0,e^{i\frac{\pi}{4}})=e^{i\frac{\pi}{8}}(e^{-i\frac{\pi}{8}}, 0;0,e^{i\frac{\pi}{8}})$
- Rotation
- $R|0\rangle=\cos\theta|0\rangle-\sin\theta|1\rangle$
- $R|1\rangle=\sin\theta|0\rangle+\cos\theta|1\rangle$
Approximating unitary operators
- Bloch sphere and rotation operators
- 二维复平面球同构与三维实平面球同构 $SU(2)\cong SO(3)$
- $|\varphi\rangle = \cos\frac{\theta}{2}|0\rangle+e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$
- $A^2=I,e^{i\theta A}=\cos(\theta)I+i\sin(\theta)A$
- $R_{x}(\theta)=e^{\frac{-i\theta X/Y/Z}{2}}=\cos\frac{\theta}{2}I-i\sin\frac{\theta}{2}X$
- $R_{y}(\theta)=e^{\frac{-i\theta X/Y/Z}{2}}=\cos\frac{\theta}{2}I-i\sin\frac{\theta}{2}Y$
- $R_{z}(\theta)=e^{\frac{-i\theta X/Y/Z}{2}}=\cos\frac{\theta}{2}I-i\sin\frac{\theta}{2}Z$
- $R_{\hat n}=e^{-i\hat n\cdot\frac{\vec\sigma}{2}}=\cos\frac{\theta}{2}I-i\sin\frac{\theta}{2}(n_xX+n_yY+n_zZ)$
- $\hat n=(n_x,n_y,n_z)$ real unit vector
- Z-Y decomposition: $U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$
- $U=e^{i\alpha}(\beta)R_{\hat n}R_{\hat m}(\gamma)R_{\hat n}(\delta)$
- $\lVert U-V\rVert=\max\limits_{|\psi\rangle}\lVert(U-V)|\psi\rangle\rVert$
- $|\langle\psi|U^\dagger M_iU|\psi\rangle-\langle\psi|V^\dagger M_iV|\psi\rangle|\leq 2\lVert U-V\rVert$
- $\lVert U_tU_{t-1}\cdots U_1-V_tV_{t-1}\cdots V_1\rVert\leq\sum_i\lVert U_i-V_i\rVert$
- $THTH=R_{\hat n}(\theta),\theta=2\arccos(\cos^2\frac{\pi}{8}),\hat n=(\cos\frac{\pi}{8},\sin\frac{\pi}{8},\sin\frac{\pi}{8})$ up to a normalization
- $T=R_z(\frac{\pi}{4})$
- $HTH=R_x(\frac{\pi}{4})$
- $THTH=\cos^{\pi}{8}I-i(\cos\frac{\pi}{8}(X+Z)+\sin\frac{\pi}{8}Y)\sin\frac{\pi}{8}$
- Densely filled: $\forall\delta>0,N=\lceil\frac{2\pi}{\delta}\rceil+1,\exists k!=j\in{1,\cdots,N}$ s.t. $\theta_{|k-j|}<\delta$, then ${t\theta_{|k-j||t=1,2,3,\cdots}}$ fills up $[0,2\pi)$ with $\delta$ precision
- $\theta_k=(k\theta)\bmod 2\pi$
- Implement $\forall \alpha,R_{\hat n}(\alpha)$ to an arbitrary small precisoin
- $HR_{\hat n}H=R_{\hat m}(\alpha),\hat m=(\cos\frac{\pi}{8},-\sin\frac{\pi}{8},\cos\frac{\pi}{8})$ up to a normalization
- $U=R_{\hat n}(\beta)R_{\hat m}(\lambda)R_{\hat n}(\delta)$ up to a global phase
Quantum Fourier Transform $F_N$
- $R_s=(1,0;0,e^{2\pi i/2^s})$
- gates: $O(n^2)$
- omit gates $R_k$ with $k=\Omega(\log n)$ and obtain a circuit with $O(n\log n)$ gates implementing QFT with precision $\frac{1}{\text{poly}(n)}$
Controlled gates
- Controlled-U
- $C^1(U)|b\rangle\otimes|\psi\rangle=|b\rangle\otimes U^b|\psi\rangle$
- $C^n(U)$
- Controlled-NOT (generalization of XOR): $\text{C-N}$
- Theorem: $U=e^{i\alpha}AXBXC,ABC=I$
- $C^1(U)|ab\rangle=(I\oplus C)\text{C-N}(I\oplus B)\text{C-N}(I\oplus A)([1,0;0,e^{i\alpha}]\oplus I)$
- $C^n(U)$ = multi C-N + C-U
- Toffoli gate ($C^2(U)$): $|abc\rangle\rightarrow|ab(c\oplus a\cdot b)\rangle$
- generalization of NAND: classic universal gate
- Classic: $0\rightarrow|0\rangle,1\rightarrow|1\rangle$
- Decomposition to $H,S,T,\text{C-N}$
Decomposition of Arbitrary unitary gates
- Two-level unitary gates are universal
- $U$ acts on $d$-dimensial space, then $U=V_1\cdots V_k,k\leq \frac{d(d-1)}{2}$ two-level unitary matrices $V_1,\cdots,V_k$ (类似高斯消元)
- $O(4^n)$
- $U$ acts on $d$-dimensial space, then $U=V_1\cdots V_k,k\leq \frac{d(d-1)}{2}$ two-level unitary matrices $V_1,\cdots,V_k$ (类似高斯消元)
- Single qubit gates & CNOT gates are universal
- $\tilde{U}$ is the non-trival $2\times 2$ unitary submatrix of $U$
- $U$ acts on the space spanned by the computational basis states $|s\rangle,|t\rangle$
- Gray code: $|g_1\rangle\rightarrow|g_{m}|$
- $|g_1\rangle\rightarrow|g_{m-1}|, C^1(U), |g_{m-1}\rangle\rightarrow |g_1\rangle$
- Controlled-U on different bit, controlled by other qubits are same
- $O(n^2)$
- Hadamard+T+Phase+CNOT are universal
- $U\rightarrow R_{\hat n},R_{\hat m},S \rightarrow H,T,S$
- Convergent rate $\Theta(\frac{1}{\epsilon})$
- Solovay-Kitaev Theorem: Fix two universal gate sets that are closed under inverses. Then any $t$-gate circuit using one gate set can be implemented to precision $\epsilon$ using a circuit of $t\cdot\text{poly}(\log\frac{t}{\epsilon})$($\Theta(\log^c\frac{1}{\epsilon})$M <>? ) gates from other set