背景知识

  • 自然数的集合论定义:
    • $a^+:=a\cup{a}$
    • 归纳集
      • $\emptyset\in A$
      • $\forall a(a\in A\rightarrow a^+\in A)$
    • $\mathbb{N}$ 为所有归纳集之交
  • Peano 结构
    • $e\in S$
    • $\forall a\in S,f(a)\in S$
    • $\forall b\in S,\forall c\in S,f(b)=f(c)\rightarrow b=c$
    • $\forall a\in S,f(a)\not= e$
    • $\forall A\subseteq S, (e\in A\wedge(\forall a\in A)(f(a)\in A))\rightarrow A=S$
  • 良序公理与数学归纳法原理等价

数论基础

  • 带余除法: $a=bq+r,b>0,0\leq r<b$
    • 存在性证明:良序公理
    • 唯一性证明
  • 整除及其性质
    • $a|b,a|c\Rightarrow a|nb+mc$
  • 最大公因子 (hcf/gcd)
    • 裴蜀定理:$\gcd(a,b)=ar+bs$
      • 证明:良序公理+带余除法
    • Strong Duality for GCD: $\max{d_i:d\in\mathbb{Z},d|a,d|b}=\min{ax+by:x\in\mathbb{Z},y\in\mathbb{Z},ax+by>0}$
      • 证明
        1. $d|s,s|d$
        2. Weak Duality + $\exists$
      • 唯一性证明
    • $\text{lcm}(a,b)\gcd(a,b)=ab$
      • 证明
        1. Isomorphism Theorem
        2. Unique Factorization
        3. $d|(a,b)\Leftrightarrow d|\frac{ab}{[a,b]}$
      • $(a,b,c)[a,b,c]=\frac{abc}{[(a,b),(b,c),(c,a)]}$
      • $[a,b,c]=\frac{abc(a,b,c)}{(a,b)(a,c)(b,c)}$
    • $\gcd(a,b,c)=\gcd(\gcd(a,b),c)$
  • 质数
    • $\pi(x)\sim\frac{x}{\ln{x}}$
    • 无限质数证明
      1. $P=p_1p_2\cdots p_n+1$
      2. Fermat Numer $F_n=2^{2^n}+1$ 两两互素
        • $F_n-2=\prod_{k=1}^{n-1}F_k$
      3. Mersenne Number $2^p-1$
        • $2^p\equiv 1\pmod{q}\Rightarrow p|q-1$
      • Dirichlet’s Theorem: $\gcd(a,m)=1$ then there are infinitely many primes $p,p\equiv a\pmod{m}$
    • 筛法求素数
    • 算术基本定理
      • 存在性证明:良序公理(找不满足中最小的)
      • 唯一性证明:$1\rightarrow n$
  • $\varphi(n)=n\prod_{p|n}(1-\frac{1}{p}),p$ is prime
    • $\varphi(p)=p-1$
    • $\varphi(n)>\frac{n}{e^\gamma\ln\ln n+\frac{3}{\ln\ln n}},\gamma=0.577$
  • Additivie group module n: $(\mathbb{Z}_n,+_n)$
    • $\langle a\rangle=\langle (a,n)\rangle$
      • $|\langle a\rangle|=\frac{n}{(a,n)}$
  • Multiplicative group module n: $(\mathbb{Z}_n^*,\cdot_n)$
    • $\text{ord}(a)$: the smallest possible integer that $a^{(t)}=e$
      • $\text{ord}(a)=|\langle a\rangle|$
      • Primitive root: $a,\text{ord}_m(a)=\varphi(m)$
        • Number: if exists, $\varphi(\varphi(m))$
    • Euler’s Theorem: $a^\varphi(n)\equiv 1\pmod{n}$
      • Fermat’s Theorem: $a^{p-1}\equiv1\pmod{p}$
    • Wilson Theorem: $(p-1)!\equiv -1\pmod{p}\iff p$ is prime
  • quadratic residue
    • $a$ is quadratic residue $x^2=a\pmod{p}$ has a solution for $x$
    • $\frac{p-1}{2}$ quadratic residues for $p$
    • Legendre symbol $(\frac{a}{p})=1$ if $a$ is a quadratic residue otherwise $-1$
    • $(\frac{a}{p})\equiv a^{(p-1)/2}\pmod{p}$

Modular linear equations

  • $ax\equiv b\pmod{n}$
    • 有解:$d=\gcd(a,n)|b$
    • 求解:
      • $ax+bn=d$
      • $x_0=\frac{xb}{d}$
      • $x_1=x_0+i\frac{n}{d},i=0,\cdots,n-1$

CRT (The Chinese remainder theorem)

  • $n=n_1n_2\cdots n_k$, where $n_i$ are pairwise relatively prime, then we have mapping $a\leftrightarrow(a_1,a_2,\cdots,a_k)$, for $\cdot=+/-/*$, we have $(a\cdot b)\pmod{n}\leftrightarrow ((a_1\cdot b\pmod{n_1},\cdots,(a_k\cdot b_k)\pmod{n_k}))$
    • $\rightarrow$: direct
    • $\leftarrow$
      • $m_i=\frac{n}{n_i}$
      • $a\equiv(\sum_{i=1}^ka_im_i(m_i^{-1}\pmod{n_i}))\pmod{n}$
  • 一般同余方程
    • 法一:
      • 有解:$a_i\equiv a_j \pmod{(n_i,n_j)}$
      • 先拆后合(相同或倍数)
      • $x\equiv a\pmod{n_i}\iff x\equiv C\pmod{[n_1,\cdots,n_k]}$
    • 法二:
      • 两两合并
  • 简化计算:
    • $2^{300}\bmod 319$
    • $319=11*29$ + CRT

数论算法

  • model: multplying two $\beta$-bit integers take $\Theta(\beta^2)$ bit operations

Euclid Algorithm

int ext_gcd(int a, int b, int &x, int &y){
    if (b==0) {
        x = 1; y = 0;
        return a;
    } else {
        int ret = ext_gcd(b,a%b,y,x);
        y -= x*(a/b);
        return ret;
    }
}
  • $a>b\geq 1$ and Euclid(a,b) performs $k\geq 1$ recursive calls, then $a\geq F_{k+2},b\geq F_{k+1}$
    • 证明:$a\geq b+(a\bmod b)$
    • Lame’s Theorem: $k\geq 1,a>b\geq 1,b<F_{k+1}$ then Euclid makes fewer than $k$ recursive calls
    • $F_k\sim\frac{\phi^k}{\sqrt{5}},\phi=\frac{1+\sqrt{5}}{2}$
    • $O(\lg b)$

Modular Exponentiation

int fp(int a, int b, int mod){
    int c = 1;
    for (;b;b>>=1,a=1ll*a*a%mod)
        if (b&1) c=1ll*c*a%mod;
    return c%mod;
}

Primality Testing

  • trial division: $\Theta{\sqrt{n}}$
  • Pseudoprimality testing:
    • base-$a$ pseudoprime: $a^{n-1}\equiv 1\pmod{n}$
    • Carmichael numbers: $\forall a\in\mathbb{Z}_n^*,a^{n-1}\equiv 1\pmod{n}$
    • Algorithm: return MODULAR-EXPONENTIATION(2,n-1,n)$\equiv 1\pmod{n}$
  • Miller-Rabin randomized primality test
    • $x^2\equiv 1\pmod{p^e}$
    • $O(s\beta^3)$
    • $n$ is an odd composite number, then the number of witnesses to the compositeness of n is at least $\frac{n-1}{2}$
    • $P(\text{MILLER-RABIN errs})<2^{-s}$
    • $P(\text{prime}|\text{RETURN prime})>0.5$ if $s>\lg(\ln n-1)$
      • applicable: $s=50$
LL multimod(LL a, LL b, LL mod) {
    a %= mod;
    b %= mod;
    LL res = 0;
    while (b) {
        if (b & 1) {
            res += a;
            if (res >= mod) res -= mod;
        }
        b >>= 1;
        a <<= 1;
        if (a >= mod) a -= mod;
    }
    return res;
}

bool witness(LL s, LL n) {
    LL u = n - 1, t = 0;
    while ((u & 1) == 0 && u != 0) u >>= 1, t++;
    LL x = fp(s, u, n), tmp;
    while (t--) {
        tmp = x;
        x = multimod(x, x, n);
        if (x == 1 && tmp != n - 1 && tmp != 1) return true;
    }

    if (x != 1)
        return true;
    else
        return false;
}

bool millerrabin(LL n, const int times = 3) {
    if (n == 2) return true;
    if ((n & 1) == 0 || n < 2) return false;
    int i = times;
    while (i--) {
        LL x = random(2, n - 1);
        if (witness(x, n)) return false;
    }
    return true;
}

Integer factorization

  • Trial division $R\rightarrow R^2$
  • Pollard’s rho heuristic $R\rightarrow R^4$
    • initial: $x_1=\text{random}(0,n-1),y=x_1,k=2$
    • Loop
      • $x_i=x_{i-1}^2\pmod{n}$
      • if $\gcd(y-x_i,n)\not=1/n$ finded
      • if $i==k$
        • $y=x_i$
        • $k=2k$

Crypotography

Private Key Crypotography

  • affine cryptosystem: $f(p)=ap+b\pmod{n}$
  • polyalphabetic crypotosystem
    • German ADFGVX Field Cipher
  • Kerckhoffs’s principle

Public Key Crypotography

  • $f^{-1}$ must be difficult to compute
  • PKC
    • Self $P,D$
    • Others $P’,D'$
    • Message $M$
    • 公钥加密
      • encoding with $P’$: $P’(M)$ -> send
      • receive -> decoding with $D’(P’(M))$
    • 数字签名
      • signing with $D$: $M’=M+D(M)$
      • (encrypt and) send -> receive (and decode)
      • verifying $M=P(D(M))$
  • RSA
    • $n=pq$
    • $(E,\varphi(n))=1$
    • $DE\equiv 1\pmod{\varphi(n)}$
    • public: $(n,E)$
    • secret: $(n,D)$
    • encoding: $y=x^E\bmod n$
    • decoding: $x=y^D\bmod n$
  • DH(Deffie-Hellman)
    • $a$: small prime
    • $p$: large prime
    • Agent a: $(X_a,Y_a=a^{X_a}\bmod p)$
    • Agent b: $(X_b,Y_b=a^{X_b}\bmod p)$
    • secret key: $K=Y_b^{X_a}\bmod p= Y_a^{X_b}\bmod p$
  • Attack
    • Small $e$ Attack: $e=3,d$ obtained
      • Result: $p,q$ leaks
      • $ed=1+k\varphi(n),k\in\mathbb{Z},k<\min{e,d}$
    • Common Modulus Attack: $(e_i,e_j)=1$
      • Result: if message decoded both sent, original message can be recovered
      • $M=E^xF^y\pmod{n},e_1x+e_2y=1$