Basic Tail inequality
Markov’s Inequality
$$P(X\geq t)\leq\frac{E(x)}{t}$$
Chebyshev’s Inequality
$$P(|X-E(X)|\geq t)\leq\frac{V(X)}{t^2}$$
Moment Generating Functions
Moment-generating function of a random variable $X$:
$$M_X(t)=E[e^{tX}]=\sum_{k=0}^\infty\frac{t^k}{k!}E(X^k)=\int_{-\infty}^{\infty}e^{tx}f(x)dx,t\in\mathbb{R}$$
Some Moment-generating function
$t\sim$ | $M_X(t)$ |
---|---|
Bernoulli $p$ | $1-p+pe^t$ |
Geometric $p$ | $\frac{pe^t}{1-(1-p)e^t}$ |
Binomial $B(n,p)$ | $(1-p+pe^t)^n$ |
Poisson $P(\lambda)$ | $e^{\lambda(e^t-1)}$ |
Normal $N(\mu,\sigma^2)$ | $e^{t\mu+\frac{1}{2}\sigma^2t^2}$ |
Chernoff Bound
Generic Chernoff Bound:
$$P(X\geq t)=P(e^{\lambda X}\geq e^{\lambda t})\leq\frac{E[e^{\lambda X}]}{e^{\lambda t}}\newline P(X\leq t)=P(e^{-\lambda X}\geq e^{-\lambda t})\leq\frac{E[e^{-\lambda X}]}{e^{-\lambda t}}$$
Chernoff Bound for $X=\sum_{i=1}^nX_i$ of independent events
$$P(X\geq t)\leq \min_{\lambda>0}e^{-\lambda t}\prod_i E[e^{tX_i}]$$
Chernoff Bound for concentration $t=(1+\delta)\mu,\mu=E[X]$
$$P(X\geq (1+\delta)\mu)=P(e^{\lambda X}\geq e^{\lambda(1+\delta)\mu})\leq\frac{E(e^{\lambda X})}{e^{\lambda(1+\delta)\mu}}$$
Chernoff Bound for independent Poisson trials (Bernoulii)
$$P(X\geq(1+\delta)\mu)\leq(\frac{e^\delta}{(1+\delta)^{(1+\delta)}})^\mu$$ $$P(X\leq(1-\delta)\mu)\leq(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}})^\mu$$
Useful forms of Chernoff Bound for independent Poisson trials
$$P(X\geq(1+\delta)\mu)<e^{-\frac{\mu\delta^2}{3}},0<\delta\leq 1$$ $$P(X\leq(1-\delta)\mu)<e^{-\frac{\mu\delta^2}{2}},0<\delta\leq 1$$ $$P(X\geq t)\leq 2^{-t},t\geq 2e\mu$$
Chernoff bound for $\chi^2$-distribution $X\sim\chi^2(k)$
$$P(X\geq(1+\epsilon)k)<e^{-\frac{\epsilon^2k}{8}}\newline P(X\geq(1-\epsilon)k)<e^{-\frac{\epsilon^2k}{8}}\newline X\sim\mathcal{N}(0,1),\mathbb{E}(e^{sX^2})=\frac{1}{\sqrt{1-2s}}$$
Martingales (鞅论)
Definition
- martingale: a sequence of random varibles $X_0,X_1,\cdots,\mathbb{E}(X_i|X_0,\cdots,X_{i-1})=X_{i-1}$
- martingale (general version): a sequence of varibales $Y_0,Y_1,\cdots$ is a martingale with respect to $X_0,X_1,\cdots$ if
- $Y_i$ is a function of $X_0,X_1,\cdots,X_i$
- $\mathbb{E}(Y_{i+1}|X_0,\cdots,X_i)=Y_i$
Azuma’s Inequality
Azuma’s Inequality: $X_0,X_1,\cdots$ is a martingale satisfying bounded difference condition ($|X_k-X_{k-1}|\leq c_k,k\geq 1$), then
$$P(|X_n-X_0|\geq t)\leq 2e^{-\frac{t^2}{2\sum_{k=1}^nc_k^2}}$$
Corollary of Azuma’s Inequality: martingale satisfying bounded difference condition with same $c$
$$P(|X_n-X_0|\geq ct\sqrt{n})\leq 2e^{-\frac{t^2}{2}}$$
Doob Sequence
- Doob Sequence of a function $f$ respect to $X_1,\cdots,X_n$ is: $Y_i=\mathbb{E}[f(X_1,\cdots,X_n)|X_1,\cdots,X_i]$
- $Y_0=\mathbb{E}(f(X_1,\cdots,X_n))$
- $Y_n=f(X_1,\cdots,X_n)$
- edge exposure martingale: $Y_0,Y_1,\cdots,Y_m$
- $m={n\choose 2}$, fix an arbitrary numbering of potential edges between the $n$ vertices, $X_i=[e_i\in G],Y_0=E(f(G)),Y_i=E(f(G)|X_1,\cdots,X_i)$
- vertex exposure martingale: $Y_0,Y_1,\cdots,Y_n$
- $X_i$ is the subgraph of $G$ induced by the vertex set $[i]$
- Shamir and Spencer Theorem: $G\sim G(n,p)$
$$P(|\chi(G)-\mathbb{E}(\chi(G))|\geq t\sqrt{n})\leq 2e^{\frac{-t^2}{2}}$$
Method of Bounded Differences
- Method of Averaged Bounded Differences
- Averaged Bounded Condition: $|E(f(X)|X_1,\cdots,X_i)-E(f(X)|X_1,\cdots,X_{i-1})|\leq c_i$
- Averaged Lipschitz condition(ALC): $\forall a,b, |E(f(X)|X_1,\cdots,X_i=a_i)-E(f(X)|X_1,\cdots,X_{i-1},X_i=b_i)|\leq c_i$
- Restate of Azuma’s inequality
- Lipshitz condition: $|f(x_1,\cdots,x_n)-f(x_1,\cdots,x_{i-1},y_i,x_{i+1},\cdots,x_n)|\leq c_i$
- Method of Bounded Difference: $n$ dependent random variables $X_1,\cdots,X_n$ and $f(X)$ satisfies the Lipshitz condition
$$P(f(X)\geq E(f(X))+t)\leq e^{-\frac{t^2}{2\sum_{i=1}^nc_i^2}}\newline P(f(X)\geq E(f(X))-t)\leq e^{-\frac{t^2}{2\sum_{i=1}^nc_i^2}}$$
Hoeffding’s Bound
For independent $X_1,X_2,\cdots,X_n$ with $X_i\in[a_i,b_i],X=\sum_{i=1}^nX_i,\forall t>0,\mu=E[X]$
$$P(X\geq \mu+t)\leq e^{-\frac{t^2}{2\sum_{i=1}^n(b_i-a_i)^2}}\newline P(X\leq \mu-t)\leq e^{-\frac{t^2}{2\sum_{i=1}^n(b_i-a_i)^2}}$$