Channel Capacity
- $(\mathcal{X},p(y|x),\mathcal{Y})$: send $x$, with probability $p(y|x)$, receiver get $y$
- Channel capacity: $C=\max_{p(x)}I(X;Y)$
- Strategy to calculate $C$
- $I(X;Y)=H(Y)-H(Y|X)$
- convex sets: $d_{\min}=\min_{a\in A,b\in B}d(a,b)$
- Examples:
- Noiseless Binary Channel: $C=1,p(x)=(\frac{1}{2},\frac{1}{2})$
- Noisy Channel with nonoverlapping Outputs: in fact not noisy
- Noisy Typewriter: $\log13$
- Binary Symmetric Channel: $C=1-H(p)$
- Binary Erasure Channel: $\max_{p(x)}H(Y)-H(\alpha)=1-P_e$
- symmetric channel: channel transition matrix row and columnr are permutations of each other $C=\log|\mathcal{Y}|-H(r)$
- weakly symmetric: rows
Channel Coding Theorem
- Message $W$ (Encoder) $X^n$ (Channel) $Y^n$ (Decoder) $\hat W$
- $\max \frac{H(W)}{n}$
- Message: can be ordered and denoted by index, $\log M$ symbols
- discrete memoryless channel (DMC): $p(y_k|x^k,y^{k-1})=p(y_k|x_k)$
- without feedback: $p(x_k|x^{k-1},y^{k-1})=p(x_k|x^{k-1})$
- memoryless + no feedback: $H(Y^n|X^n)=\sum_{i=1}^nH(Y_i|X_i)$
- Markov chain: $W\rightarrow X^n\rightarrow Y^n\rightarrow\hat W$
- DMC: $C=\max I(X;Y)$
DMC
- codebook ($f(w)=x^n$) shared between sender and receiver
- $(M,n)$ code
- index set ${1,2,\cdots, M}$
- encoding function $f(x):{1,2,\cdots,M}\rightarrow\mathcal{X}^n$, yielding codewords $x^n(1),\cdots,x^n(M)$
- decoding function $g(x)$
- Conditional probability of error: $\lambda_i=\sum_{y^n}p(y^n|x^n(i))[g(y^n\neq i)]$
- maximal probability of error: $\lambda^{(n)}=\max \lambda_i$
- average: $P_e^{(n)}=\frac{1}{M}\sum\lambda_i$
- rate $R$ of $(M, n)$ code: $R=\frac{\log M}{n}$ bits per transmission
- achievable $R$: sequence $(2^{nR}, n)$ codes such that the maximal probability of error $\lambda(n)\rightarrow 0$ when $n\rightarrow\infty$
- capacity: supremum of all achievable rates
- Channel coding theorem: $C=\max_{p(x)}I(X;Y)$
- Achievability: For any $r<C,\exists (2^{nr},n)$ code
- Converse: For any $r>C,\lambda_e>0$
Intuition for Channel Capacity: $2^{nI(X;Y)}=2^{n(H(Y)-H(Y|X))}$ (手电筒)
Proof: $R\leq C$; $\forall R<C$, achievable
Feedback Capacity
- $(2^{nR}, n)$ feedback code: sequence of mappings $x_i(W,Y^{i-1})$
- $C_{FB}=C=\max_{p(x)}I(X;Y)$ (Feedback cannot increase capacity)
Source-Channel Separation
- data compression: $R>H$
- data transmission: $R<C$
- Source-channel coding theorem
- if $V_1,V_2,\cdots,V_n$ is a finite alphabet stochastic process that satisfies the AEP and $H(\mathcal{V})<C$, exists source-channel code with probability of error $\rightarrow 0$
- if $H(\mathcal{V})>C$, probability of error is bounded away from zero
Error Correction Code
- Repetition code
- Parity check code
- Hamming code (n,k,d)
- BCH code
- Convolutional code
- LDPC code
- Polar code