How large or how small a collection of finite objects can be, if it has to satisfy certain restrictions
Sunflower
- set system $\mathcal{F}\subset 2^{[n]}$ with ground set $[n]$
- a sunflower of size $r$ with center $C$
- $|\mathcal{F}|=r$
- $\forall S,T\in\mathcal{F},S\cap T=C$
- Sunflower Lemma (Erdős-Rado 1960)
- $\mathcal{F}\subset{[n]\choose k},|\mathcal{F}|>k!(r-1)^k\Rightarrow\exists$ a sunflower $\mathcal{G}\subset\mathcal{F}$ such that $|\mathcal{G}|=r$
- Sunflower Conjecture: $|\mathcal{F}|>c(r)^k$
Mutually Intersecting
- Erdős-Ko-Rado Theorem: $\mathcal{F}\subset{[n]\choose k},n\geq 2k,\forall S,T\in\mathcal{F},S\cap T\neq\emptyset\Rightarrow|\mathcal{F}|\leq{n-1\choose k-1}$
- Katona’s proof: double counting
- Erdős’ proof: shifting
- Shifting(Compression)
- Define a shift operator
- perserve desired property
- original problem is easy on shifted elements
- e.g. Isoperimetric problem: Steiner symmetrization
- Define a shift operator
Sperner System
- Antichains: $\forall A,B\in\mathcal{F},A\not\subseteq B,{[n]\choose k}$ is an antichain
- Sperner’s Theorem(1928): $\mathcal{F}\subseteq 2^{[n]}$ is an antichain, $|\mathcal{F}|\leq {n\choose\lfloor n/2\rfloor}$
- Sperner’s proof(shadows)
- LYM inequality: $\mathcal{F}\subseteq 2^{[n]}$ is an antichain, $\sum_{S\in\mathcal{F}}\frac{1}{n\choose|S|}\leq 1$
- Lubell’s proof(counting)
- Alon’s proof(probabilistic)
VC-dimension
- trace: $\mathcal{F}\subseteq 2^X,R\subseteq X$, the trace of $\mathcal{F}$ on $R$ is $\mathcal{F}|_R={S\cap R|S\in \mathcal{F}}$
- $\mathcal{F}$ shatters $R$ if $\mathcal{F}|_R=2^R$
- $\forall T\subseteq R,\exists S\in\mathcal{F},T=S\cap R$
- VC-dimesion(Vapnik–Chervonenkis dimension) of a set family $\mathcal{F}\subseteq 2^{[n]}$: $\text{VC-dim}(\mathcal{F})=\max{|R||R\subseteq [n],\mathcal{F}|_R=2^R}$
- Sauer’s Lemma: Let $\mathcal{F}\subseteq 2^X,|X|=n$. If $|\mathcal{F}|>\sum_{1\leq i<k}{n\choose i}$ then $\exists R\in{X\choose k}$, $F$ shatters $R$
- $|\mathcal{F}|>\sum_{1\leq i<k}{n\choose i}$ then $\text{VC-dim}(\mathcal{F})\geq k$
- hereditary(ideal, abstract simplicial): $S\subseteq T\in\mathcal{F}\Rightarrow S\in\mathcal{F}$
- $R\in\mathcal{F},\mathcal{F}$ shatters $R$
- down-shift $S_i$: $S_i(T)=T\backslash{i}$ if $i\in T$ and $T\backslash{i}\not\in\mathcal{F}$, $T$ otherwise