Existence by Probability
$$\exists x,A(x)\Leftarrow P(A(x))>0$$
$$\exists x,A(x)\Leftarrow P(\neg A(x))<1$$
$$P(A)=P(\wedge_{i=1}^n\overline{A}i)>0\Leftarrow P(\vee{i=1}^nA_i)<1\Leftarrow \sum_{i=1}^nP(A_i)$$
Lower Bound for Ramsey’s Number
- $R(k,k),\forall$ two coloring of $K_n,n>R(k,k),\exists$ a monochromactic $K_k$
- Erdős Theorem(1947): ${n\choose k}2^{1-C_k^2}<1$ then it is possible to color the edges of $K_n$ with two colors so that there is no monochromatic $K_k$ subgraph
Paradoxical Tournament
- orientation of the edges of the complete graph on set of vertices $V$
- $k$-paradoxical: $\forall V, |V|=k,\exists v$ beats them all
- Theorem (Erdős 1963): if ${n\choose k}(1-2^{-k})^{n-k}<1$, there is a tournament on $n$ vertices that is $k$-paradoxical
The Averaging principle
$$\exists x,A(x)\geq t\Leftarrow E(x)\geq t$$
Hamilton Path in Tournament
- Theorem (Szele 1943): There is a tournament on $n$ players with at least $n!2^{-(n-1)}$ Hamiltonian paths
Independent sets
- independent set: a set of vertices with no edges between them
- Theorem: $G$ has an independent set with at least $\frac{n^2}{4m}$ vertices
Coloring large-girth graphs
- $G(n,p)$: graph of $n$ vertices and each edge occurs at probability $p$
- girth: $g(G)$ is the length of the shortest cycle in $G$
- $\chi(G)=\min(C\in\mathbb{N}|\exists :V\rightarrow [C],\forall uv\in E,f(u)\neq f(v))$
- Independent number: $\alpha(G)=\max{|S||S\subseteq V \text{ and }\forall u,v\in S,uv\not\in E}$
- Lemma: $\chi(G)\geq\frac{n}{\alpha(G)}$
- Theorem (Erdős 1959): $\forall k,\ell,\exists G,g(G)>\ell,\chi(G)>k$
Lovász Local Lemma
Consider a set of “bad” events $A_1,A_2,\cdots,A_n$, suppose $P(A_i)\leq p,1\leq i\leq n$
- Mutually independent events: $P(\wedge_{i=1}^n\overline{A_i})\geq(1-p)^n$
- Arbirarily dependent events: $P(\wedge_{i=1}^n\overline{A_i})=1-P(\vee_{i=1}^n)\geq 1-np$
- dependency graph: $D(V,E)$
- $ij\in E\iff A_i$ and $A_j$ are dependent
- $d=\max{\deg(i)}$
- Lovasz Local Lemma
- $\forall i,P(A_i)\leq p$
- $ep(d+1)\leq 1$ or $4dp\leq 1$
- Then $P(\wedge_{i=1}^n\overline{A}_i)>0$
- General Lovasz Local Lemma
- $\exists x_1,\cdots,x_n\in [0,1),\forall i, P(A_i)\leq x_i\prod_{(j,i)\in E}(1-x_j)$
- Then $P(\wedge_{i=1}^n\overline{A}i)\geq \prod{i=1}^n(1-x_i)$