- Graph Isomorphism (GI)
- Input: two undirected graphs $G$ and $H$
- Output: $[G\cong H]$
- String Isomorphism (SI)
- Input: two strings $x,y$: $[n]\rightarrow[m]$ and a permutation group $G\subseteq S_n$
- Output: $[x\cong_G y]$
群作用的基本概念
- 群 $G$ 在非空集合 $X$上的左作用 $\circ:G\times X\rightarrow X$ 满足
- $\forall x\in X(e\circ x=x)$
- $g_1\circ(g_2\circ x) = (g_1g_2) \circ x$
- 轨道:$O_x=Gx={g\circ x:g\in G}$
- Let $X/G={O_x|x\in G}$
- $X=\bigsqcup O_x$
- $g$-不动点(invariant set):$X_g=\text{fix}(g)={x\in X:g\circ x=x}$
- 稳定化子(stabilizers):$G_x=\text{stab}(x)={g\in G: g\circ x=x}\leqslant G$
- Burnside引理: $|X/G|=\frac{1}{|G|}\sum_{g\in G}|X_g|$
Pólya Theory of Counting
- $M_\pi(x_1,x_2,\cdots,x_n)=\prod_{i=1}^k x_{l_i},i$th cycle has length $i$
- cycle index of $G$: $P_G(x_1,x_2,\cdots,x_n) = \frac{1}{|G|}\sum_{\pi\in G}M_\pi(x_1,x_2,\cdots,x_n)$
- nonequivalent $m$-colorings of $n$ objects under the action of $G$ pattern inventory
- $F_G(y_1,y_2,\cdots,y_m)=\sum_{v}a_vy_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}$
- $v=(n_1,n_2,\cdots,n_m),\sum_{i=1}^mn_i = n$
- Pólya’s enumeration formula: $F_G(y_1,y_2,\cdots,y_m)=P_G(\sum_{i=1}^my_i,\sum_{i=1}^my_i^2,\cdots,\sum_{i=1}^my_i^n)$