• Graph Isomorphism (GI)
    • Input: two undirected graphs G and H
    • Output: [GH]
  • String Isomorphism (SI)
    • Input: two strings x,y: [n][m] and a permutation group GSn
    • Output: [xGy]

群作用的基本概念

  • G 在非空集合 X上的左作用 :G×XX 满足
    • xX(ex=x)
    • g1(g2x)=(g1g2)x
  • 轨道:Ox=Gx=gx:gG
    • Let X/G=Ox|xG
    • X=Ox
  • g-不动点(invariant set):Xg=fix(g)=xX:gx=x
  • 稳定化子(stabilizers):Gx=stab(x)=gG:gx=xG
    • [G:Gx]=|Ox|
  • Burnside引理: |X/G|=1|G|gG|Xg|

Pólya Theory of Counting

  • Mπ(x1,x2,,xn)=i=1kxli,ith cycle has length i
  • cycle index of G: PG(x1,x2,,xn)=1|G|πGMπ(x1,x2,,xn)
  • nonequivalent m-colorings of n objects under the action of G pattern inventory
    • FG(y1,y2,,ym)=vavy1n1y2n2ymnm
    • v=(n1,n2,,nm),i=1mni=n
  • Pólya’s enumeration formula: FG(y1,y2,,ym)=PG(i=1myi,i=1myi2,,i=1myin)