- ordinary generating function(OGF) define by $a_n$: $G(x)=\sum_{n\geq0}a_nx^n$
- coefficient: $[x^k]G(x)$
- $\mathbb{C}[ ]$: ring of formal power series with complex coefficient
- Combination: 3 red, 4 blue, and 5 green
- $(1+x+x^2+x^3)(1+x+x^2+x^3+x^4)(1+x+x^2+x^3+x^4+x^5)$
- coefficient $x^k$ gives the number of way to select $k$ balls
- Fibonacci number
- $F_n=\frac{1}{\sqrt{5}}(\phi^n-\hat\phi^n),\phi=\frac{1+\sqrt{5}}{2},\hat\phi=\frac{1-\sqrt{5}}{2}$
- $G(x)=\frac{x}{1-x-x^2}=\frac{x}{(1-\phi x)(1-\hat\phi x)}=\frac{\alpha}{1-\phi x}+\frac{\beta}{1-\hat\phi x}$
- General Methodology
- Give a recursion that computes $a_n$
- Give the generating function and manipulate the right hand side of equation so that it becomes some other expression involving $G(x)$
- shift: $x^kG(x)=\sum_{n\geq k}g_{n-k}x^n$
- addition: $F(x)+G(x)=\sum_{n\geq 0}(f_n+g_n)x^n$
- convolution: $F(x)G(X)=\sum_{n\geq 0}\sum_{k=0}^nf_kg_{n-k}x^n$
- differentiation: $G’(x)=\sum_{n\geq0}(n+1)g_{n+1}x^n$
- Solve the resulting equation to derive an explicit formula for $G(x)$
- Expand $G(x)$ into a power series and read off the coefficient of $x^n$
- Taylor expansion: $G(x)=\sum_{n\geq 0}\frac{G^{(n)}(0)}{n!}x^n$
- Geometric sequence: $\frac{1}{1-x}=\sum_{n\geq0}x^n$
- $G(x)=\sum_{i=1}^{k}\frac{a_i}{1-b_ix}$, $[x^n]G(x)=\sum_{i=1}^ka_ib_i^n$
- Newton’s formular: $(1+x)^\alpha=\sum_{n\geq0}{\alpha\choose n}x^n$
- ${\alpha\choose n}=\frac{\alpha(\alpha-1)\cdots(\alpha-(n-1))}{n!}$
- ${-n\choose m}=(-1)^m{n+m-1\choose m}$
- Catalan Number: $C_n=\sum_{k=0}^{n-1}C_kC_{n-1-k},C_0=1$
- Interpretation
- 出入栈:the number of expressions containing n pairs of parentheses which are correctly matched:以最后一个左括号的对应右括号的位置为 choice,划分成两个部分
- Dyck words of length $2n$(A Dyck word is a string consisting of n X’s and n Y’s such that no initial segment of the string has more Y’s than X’s)
- the number of different ways $n + 1$ factors can be completely parenthesized
- the number of full binary trees with $n + 1$ leaves
- 单调路径:the number of monotonic lattice paths along the edges of a grid with $n × n$ square cells, which do not pass above the diagonal
- 三角形剖分:triangulations of a convex $(n+2)$-gon
- 二叉树种类
- $C_n=\frac{1}{n+1}{2n\choose n}$
- Generating function
- $G(x)^2=\sum_{n\geq0}\sum_{k=0}^nC_kC_{n-k}x^n$
- $G(x)=1+xG(x)^2\Rightarrow G(x)=\frac{1-(1-4x)^{\frac{1}{2}}}{2x}$
- 二次方程只有一解:$\lim_{x\rightarrow0}G(x)=C_0$
- $G(x)=2\sum_{n\geq0}{\frac{1}{2}\choose n+1}(-4x)^n$
- Andre’s reflection method: $C_n={2n\choose n}-{2n\choose n+1}$
- bijective proof: split up the set of all monotonic paths into $n + 1$ equally sized classes
- Generating function
- $\Omega(\frac{4^n}{n^{3/2}})$
- Interpretation
- Quicksort
- Quicksort recursion: $T_n=\frac{1}{n}\sum_{k=1}^n(n-1+T_{k-1}+T_{n-k})$
- $\sum_{n\geq0}nT_nx^n=\sum_{n\geq 0}n(n-1)x^n + 2\sum_{n\geq0}(\sum_{k=0}^{n-1}T_k)x^n$
- $xG’(x)=\frac{2x^2}{(1-x)^3}+\frac{2x}{1-x}G(x)$
- $G(x)=\frac{2}{(1-x)^2}\ln\frac{1}{1-x}$
- $T_n=2(n+1)H(n)-2n$