matchign: $M\subseteq E,\neg\exists e_1,e_2\in M$ share a vertex
vertex cover: $C\subseteq V,\forall e\in E$ adjacent to some $v\in C$
König-Egerváry theorem (matrix form): For any 0-1 matrix, the maximum number of independent 1’s $s$ equals the minimum number of rows and columns required to cover all the 1’s $t$
$r\leq s$
$r\geq s$: Hall Thoerem
Dilworth’s theorem: $\max$ size of antichain $r$ in poset $P$ $=$ $\min$ size $s$ of smallest partition of $P$ into chains
chain: totally ordered set, all pairs of elements are comparable
antichain: all pairs of elements are incomparable
$r\leq s$
$r\geq s$:
Erdős-Szekeres Theorem: A sequence of more than $mn$ different real numbers must contain either an increasing subsequence of length {\displaystyle m+1}{\displaystyle m+1}, or a decreasing subsequence of length $(m+1)(n+1)$.