2-color Ramsey

  • $R(k,l)$ is the smallest integer satisfying: if $n\geq R(k,l),\forall$ 2-coloring $K_n$, there exists a red $K_k$ or a blue $K_l$
  • Remsey Theorem (In graph theory): $R(k,l)$ is finite
    • $R(k,2)=k,R(2,l)=l$
  • Upper Bound: $R(k,l)\leq R(k,l-1)+R(k-1,l)$
    • $R(k,l)\leq {k+l-2\choose k-1}$
  • Lower Bound: $R(k,k)\geq n=\Omega(k2^{\frac{k}{2}})$

mix-color Ramsey

  • $R(r;k_1,k_2,\cdots,k_r)$: if $n\geq R(r;k_1,k_2,\cdots,k_r)$ for any $r$-coloring of $K_n$, there exists a monochromatic $k_i$-clique with color $i$ for some $i\in{1,2,\cdots,r}$
  • $R(r;k_1,k_2,\cdots,k_r)\leq R(r-1;k_1,k_2,\cdots,k_{r-2},R(2;k_{r-1},k_r))$

hypergraph Ramsey

  • if $n\geq R_t(r;k_1,k_2,\cdots,k_r)$ for any $r$-coloring of ${[n]\choose t}$, there exists a monochromatic $S\subseteq [n],|S|=k_i$, ${S\choose t}$ are colored $i$
    • Erdos-Rado partition arrow: $n\rightarrow(k_1,k_2,\cdots,k_r)^t$
  • $R_{t}(r;k_{1},k_{2},\ldots ,k_{r})\leq R_{t}(r-1;k_{1},k_{2},\ldots ,k_{r-2},R_{t}(2;k_{r-1},k_{r}))$

Application

  • Erdos-Szekeres(1935, The Happy Ending Problem) Theorem: $\forall m\geq 3,\exists N(m)$ such that any set of $n\geq N(m)$ points in the plane, no three on a line, contains $m$ points that are the vertices of a convec $m$-gon
    • $N(m)=R_3(2;m,m)$
  • Problem: Is $x\in S,S\in{[N]\choose n},x\in[N]$
    • Theorem (Yao 1981): If $N\geq 2n$, on sorted table, any search Alg requires $\Omega(\log n)$ accesses in the worst-case
    • Theorem (Yao 1981): For sufficiently large $N$, on any implicit data structure, any search Alg requires $\Omega(\log n)$ accesses in the worst-case