$R(r;k_1,k_2,\cdots,k_r)$: if $n\geq R(r;k_1,k_2,\cdots,k_r)$ for any $r$-coloring of $K_n$, there exists a monochromatic $k_i$-clique with color $i$ for some $i\in{1,2,\cdots,r}$
if $n\geq R_t(r;k_1,k_2,\cdots,k_r)$ for any $r$-coloring of ${[n]\choose t}$, there exists a monochromatic $S\subseteq [n],|S|=k_i$, ${S\choose t}$ are colored $i$
Erdos-Szekeres(1935, The Happy Ending Problem) Theorem: $\forall m\geq 3,\exists N(m)$ such that any set of $n\geq N(m)$ points in the plane, no three on a line, contains $m$ points that are the vertices of a convec $m$-gon
$N(m)=R_3(2;m,m)$
Problem: Is $x\in S,S\in{[N]\choose n},x\in[N]$
Theorem (Yao 1981): If $N\geq 2n$, on sorted table, any search Alg requires $\Omega(\log n)$ accesses in the worst-case
Theorem (Yao 1981): For sufficiently large $N$, on any implicit data structure, any search Alg requires $\Omega(\log n)$ accesses in the worst-case