- Product Rule: finite set $|S\times T|=|S||T|$
- Sum Rule: finite disjoint set $|S\cup T|=|S|+|T|$
- Bijection Rule: finite set $\exists\phi:S\rightarrow T$ onto and 1-1 then $|S|=|T|$
- 1-1: $\leq$
- onto: $\geq$
- $[m] = {0,1,2,\cdots,m-1}$
- $2^{[m]}={S|S\subseteq [n]}$: Power set
- ${n\choose k}=|{[n]\choose k}|$
- ${S\choose k}={T\subseteq S||T|=k}$
- ${n\choose m_1,\cdots,m_k}=\frac{n!}{m_1!\cdots m_k!}$
- number of assignments such that $i$-th bin has $m_i$ balls in it
- number of permutations of a multiset $M$ with $|M|=n$ such that $M$ has $k$ distinct elements whose multiplicities are given by $m_1,m_2,\cdots,m_k$
- $(m)_n= {m\choose m-n}$: $m$ lower factorial $n$
- Binominal theorem: $(1+x)^n=\sum_{k=0}^n{n\choose k}x^k$
- Multinominal theorem: $(x_1+\cdots+x_k)^n=\sum_{m_1+\cdots+m_k=n}{n\choose m_1,\cdots,m_k}x_1^{m_1}\cdots x_k^{m_k}$
- $k$-composition of $n$: ${n-1\choose k-1}$
- ordered sum of positive integers
- week $k$-composition of $n$: ${n+k-1\choose k-1}$
- number of nonnegative solutions to $x_1+x_2+\cdots+x_k\leq n$: ${n+k \choose k}$
- $k$-multisets on $S$: $({n\choose k})={n+k-1\choose n-1}={n+k-1\choose k}$
- ${n\brace k}$: $k$-partitions of an $n$-set, Stirling number of the second kind
- ${n\brace k}=k{n-1\brace k}+{n-1 \brace k-1}$
- $\left{{n \atop m}\right}={\frac {1}{m!}}\sum _{k=1}^{m}(-1)^{m-k}{m \choose k}k^{n}$
- $B(n)=\sum_{k=1}^n{n\brace k}$: partitions of an $n$-set, Bell number
- $p_k(n)$: Partitions of a number, a multiset ${x_1,\cdots,x_k}$ with $x_i\geq 1$ and $\sum_{i=1}^kx_i=n$
- $p_k(n)=p_{k-1}(n-1)+p_k(n-k)$
- $p_k(n)\sim\frac{n^{k-1}}{k!(k-1)!},n\rightarrow\infty$
- ${n-1\choose k-1}\leq k!p_k(n)\leq {n+\frac{k(k-1)}{2}-1\choose k-1}$
- $p(n)=\sum_{k=1}^np_k(n)$: partition number
- Ferrers diagram(Young diagram)
- Conjugate partition
- The number of partitions of $n$ which have largest summand $k$ is $p_k(n)$
- $p_k(n)=\sum_{j=1}^kp_j(n-k)$
Function $f:N\rightarrow M$
elements of $N$ | elements of $M$ | any $f$ | 1-1($\leq 1$) | on-to($\geq 1$) |
---|---|---|---|---|
distinct | distinct | $m^n$$n$-tuples of $m$ things | $(m)_n$$n$-permutations of $m$ things | $m!{n\brace m}$partition $[n]$ into $m$ ordered parts |
identical | distinct | $({m\choose n})$$n$-combinations of $[m]$ with repitation | $m\choose n$$n$-combinations of $[m]$ without repetitions | ${n-1\choose m-1}$$m$-compositions of $n$ |
distinct | identical | $\sum_{k=1}^m{n\brace k}$partitions of $[n]$ into $\leq m$ parts | $[n\leq m]$$n$ pigeons into $m$ holes | ${n \brace m}$partitions of $[n]$ into $m$ parts |
identical | identical | $\sum_{k=1}^mp_k(n)=p_m(n+m)$partitions of $n$ into $\leq m$ parts | $[n\leq m]$$n$ pigeons into $m$ holes | $p_m(n)$partitions of $n$ into $m$ parts |