• Product Rule: finite set $|S\times T|=|S||T|$
  • Sum Rule: finite disjoint set $|S\cup T|=|S|+|T|$
  • Bijection Rule: finite set $\exists\phi:S\rightarrow T$ onto and 1-1 then $|S|=|T|$
    • 1-1: $\leq$
    • onto: $\geq$
  • $[m] = {0,1,2,\cdots,m-1}$
  • $2^{[m]}={S|S\subseteq [n]}$: Power set
  • ${n\choose k}=|{[n]\choose k}|$
    • ${S\choose k}={T\subseteq S||T|=k}$
  • ${n\choose m_1,\cdots,m_k}=\frac{n!}{m_1!\cdots m_k!}$
    • number of assignments such that $i$-th bin has $m_i$ balls in it
    • number of permutations of a multiset $M$ with $|M|=n$ such that $M$ has $k$ distinct elements whose multiplicities are given by $m_1,m_2,\cdots,m_k$
  • $(m)_n= {m\choose m-n}$: $m$ lower factorial $n$
  • Binominal theorem: $(1+x)^n=\sum_{k=0}^n{n\choose k}x^k$
  • Multinominal theorem: $(x_1+\cdots+x_k)^n=\sum_{m_1+\cdots+m_k=n}{n\choose m_1,\cdots,m_k}x_1^{m_1}\cdots x_k^{m_k}$
  • $k$-composition of $n$: ${n-1\choose k-1}$
    • ordered sum of positive integers
  • week $k$-composition of $n$: ${n+k-1\choose k-1}$
    • number of nonnegative solutions to $x_1+x_2+\cdots+x_k\leq n$: ${n+k \choose k}$
  • $k$-multisets on $S$: $({n\choose k})={n+k-1\choose n-1}={n+k-1\choose k}$
  • ${n\brace k}$: $k$-partitions of an $n$-set, Stirling number of the second kind
    • ${n\brace k}=k{n-1\brace k}+{n-1 \brace k-1}$
    • $\left{{n \atop m}\right}={\frac {1}{m!}}\sum _{k=1}^{m}(-1)^{m-k}{m \choose k}k^{n}$
  • $B(n)=\sum_{k=1}^n{n\brace k}$: partitions of an $n$-set, Bell number
  • $p_k(n)$: Partitions of a number, a multiset ${x_1,\cdots,x_k}$ with $x_i\geq 1$ and $\sum_{i=1}^kx_i=n$
    • $p_k(n)=p_{k-1}(n-1)+p_k(n-k)$
    • $p_k(n)\sim\frac{n^{k-1}}{k!(k-1)!},n\rightarrow\infty$
      • ${n-1\choose k-1}\leq k!p_k(n)\leq {n+\frac{k(k-1)}{2}-1\choose k-1}$
  • $p(n)=\sum_{k=1}^np_k(n)$: partition number
  • Ferrers diagram(Young diagram)
    • Conjugate partition
    • The number of partitions of $n$ which have largest summand $k$ is $p_k(n)$
    • $p_k(n)=\sum_{j=1}^kp_j(n-k)$

Function $f:N\rightarrow M$

elements of $N$ elements of $M$ any $f$ 1-1($\leq 1$) on-to($\geq 1$)
distinct distinct $m^n$$n$-tuples of $m$ things $(m)_n$$n$-permutations of $m$ things $m!{n\brace m}$partition $[n]$ into $m$ ordered parts
identical distinct $({m\choose n})$$n$-combinations of $[m]$ with repitation $m\choose n$$n$-combinations of $[m]$ without repetitions ${n-1\choose m-1}$$m$-compositions of $n$
distinct identical $\sum_{k=1}^m{n\brace k}$partitions of $[n]$ into $\leq m$ parts $[n\leq m]$$n$ pigeons into $m$ holes ${n \brace m}$partitions of $[n]$ into $m$ parts
identical identical $\sum_{k=1}^mp_k(n)=p_m(n+m)$partitions of $n$ into $\leq m$ parts $[n\leq m]$$n$ pigeons into $m$ holes $p_m(n)$partitions of $n$ into $m$ parts