- 场(向量场):$\mathbf{X}:U\rightarrow\mathbb{R}^n$
- 梯度场:$\Delta f=\text{grad} f=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})^T$
- 旋度场:$\text{curl} \mathbf{X} = \text{rot} \mathbf{X} = (\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})$
- 散度:$\text{div} \mathbf{X}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial z}+\frac{\partial R}{\partial z}$
- $\text{curl}({\nabla f})=0$
- $\text{div}({\text{curl} \mathbf{X}})=0$