A Wishlist for Optimization Algorithms

  • Nonlinear, non-convex objectives
  • Powerful enough to tackle hard problems in a systematic way, and meanwhile is still practical
  • Becoming more accurate as we’re paying more
  • A generic framework that can be applied obviously to various problems.
  • Methods
    • sum-of-squares (SoS) SDP
    • Lasserre hierarchy
    • Lovász-Schrijver hierarchy

Quadratic programming

min12xTQx+cTx

Semidefinite Program

  • A0: symmetric matrix ARn×n is positive semidefinite (xRn,xTAx0)
  • A0λ(A)0BRn×n,A=BTB
  • Semidefinite Programing(SDP): C,A1,,AkRn×n,b1,b2,,bkR

max tr(CTY)=i=1ni=1ncijyijs.t. tr(ArTY)br1rkY0Y=YTRn×n

  • SDP (vector program form, LP for inner products)

maxi=1ni=1ncijvi,vjs.t.i=1nj=1naij(r)vi,vjbr1rkv1,,vnRn

  • LP SDP convex programs
  • ellipsoid method: find OPT±ϵ in time poly(n,1ϵ)
  • SDP-Relaxation
    • Present the original quadratic program
    • SDP relaxation: xuxvxv,xu
    • Solve SDP relaxtion
    • Round optimal solution xv to x^v

Max-Cut

  • Some Algorithm
    • Greedy: 12-approximate
    • Random: 12-approximate
    • Local Search: 12-approximate
  • LP for Max-Cut

maxuvEyuvs.t. yuv|xuxv|uvExv0,1vV

  • Linearization: Integrality gap >2

maxuvEyuvs.t. yuvyuw+ywvu,v,wVyuv+yuw+ywv2u,v,wVyuv0,1,u,vV

  • Quadratic Program

maxuvEyuvs.t. yuv12(1xuxv)uvExv1,1vV

  • Strictly Quadratic Program (nonlinear,non-convex)

maxuvE12(1xuxv)s.t. xv2=1vV

  • Relax to vector program

maxuvE12(1xu,xv)s.t. |xv|2=1vVxvR|V|

  • Rounding: x^v=sgn(xv,u),uRn,|u|2=1 is uniform random unit vector
    • Generate u: u=r|r|2,r=(r1,,rn)Rn,riN(0,1) i.i.d
    • $E(\text{cut})=\sum_{uv\in E}{\frac{\theta_{uv}}{\pi}}=\sum_{uv\in E}\frac{\arccos\langle x_u^,x_v^\rangle}{\pi}\geq\alpha\sum_{uv\in E}\frac{1}{2}(1-\langle x_u^,x_v^\rangle),\geq\alpha\text{OPT}_{\text{IP}}\geq\alpha\text{OPT}$
    • Assuming the unique games conjecture: no poly-time algorithm with approx. ratio <α=infx[1,1]2arccos(x)π(1x)=0.87856

SoS

  • Given a n-variate polynomial f, determine whether f(x)0 for all x0,1n
    • NP-hard
  • multilinear: f(x)=d=(d1,,dn)0,1nx1d1xndn
  • Given a n-variate polynomial f, find
    • either an x0,1n such that f(x)<0
    • or a “proof” of f(x)0 over all x0,1n
      • SoS proof: f(x)=i=1rg1(x)2
      • For nonnegatvie polynomial
        • f:0,1nR, degree-2n SoS proof always exists
        • degree-d SoS proof needs at most r=nO(d) length
        • if f has degree=d SoS proff, then it can be found in nO(d) time (by SDP)